N. Sensharma¹, U. Garg¹, S. Frauendorf¹, S. Zhu², A. D. Ayangeakaa², M. P. Carpenter², Q. B. Chen³, J. L. Cozzi¹, S. S. Ghugre⁴, Y. K. Gupta⁵, D. J. Hartley⁶, K. B. Howard¹, R. V. F. Janssens², F. G. Kondev², R. Palit⁷, C. M. Petrache⁸, J. Sethi², D. Seweryniak², R. P. Singh⁹

¹University of Notre Dame, IN 46556, USA, ²Argonne National Laboratory, Argonne, IL 60439, USA, ³Technische Universität München, Germany, ⁴UGC-DAE Consortium for Scientific Research, Kolkata 700 064, India, ⁵Bhabha Atomic Research Center, Mumbai 400 085, India, ⁶United States Naval Academy, Annapolis, MD 21402, USA, ⁷Tata Institute of Fundamental Research, Mumbai 400 005, India, ⁸Centre de Sciences Nucléaires et Sciences de la Matière, Université Paris-Sud and CNRS/IN2P3, F-91405 Orsay, France, ⁹Inter University Accelerator Centre, New Delhi 110 067, India

Introduction

Wobbling is a phenomenon characteristic of triaxial nuclei. It is the oscillation of one of the principal axes about the space fixed angular momentum \vec{J} .

Characteristics of Wobbling bands:

- Rotational bands corresponding to $n_w = 0, 1, 2, ...$
- Transitions from $n_{w+1} \rightarrow n_w (\Delta n_w = +1)$
- Interband Transitions are $\Delta I = 1$, E2.

Types of Wobbling:

Longitudinal Wobbling

- 1) Odd particle aligns with Medium (m) axis
- 2) Wobbling energy (E_{wobb}) increases with the spin J

Figure: Schematic of Longitudinal wobbling in triaxial nuclei.

Transverse Wobbling

- 1) Odd particle aligns with Short (s) axis
- 2) Wobbling energy (E_{wobb}) decreases with the spin J

Figure: Schematic of Transverse wobbling in triaxial nuclei.

- Only 7 known cases of wobbling: ^{163,161,165,167}Lu, ¹⁶⁷Ta in the A \sim 160 and ¹³⁵**Pr**, ¹³³La in the A \sim 130 region.
- Higher phonon $(n_w = 2)$ wobbling bands have been identified only in 2 nuclei: 163,165 Lu.

Two-phonon wobbling in ¹³⁵Pr

Experimental Details

- Experiment performed using Gammasphere array at the Argonne National Laboratory.
- Reaction: ¹²³Sb(¹⁶O,4n)¹³⁵Pr at 80 MeV.
- 83 Compton suppressed Ge detectors used.
- A total of 1.45×10^{10} three and higher-fold
- γ -ray coincidence events collected.

Figure: Partial negative parity level scheme of 135 Pr developed in the present work. Newly identified transitions are shown with an asterisk (*).

Transverse Wobbling in ¹³⁵**Pr**

Figure: The Gammasphere array at the Argonne National Laboratory

Figure: Angular distribution plots showing a high E2 mixing for the three lowest $n_w = 2 \rightarrow n_w = 1$ linking transitions in comparison with that of the pure M1 Signature Partner \rightarrow Yrast linking transition.

Figure: Variation of the $B(E2_{out})/B(E2_{in})$ ratio with spin for the $n_w =$ 2 band and its agreement with the QTR and the PRM models.

A transverse wobbling band built on $n_w = 2$ excitations has been identified in 135 Pr. This is the first observation of two-phonon wobbling in A ${\sim}130$ region and further affirms the existence of wobbling in a mass region and spin values different from all the previously reported cases.

- (UND)

Conclusion

Acknowledgements

VERSITY OF

 U.S. National Science Foundation [PHY-1713857 (UND), PHY-1559848 (UND), and PHY-1203100 (USNA)] • U. S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-06CH11357 (ANL) and DE-FG02-95ER40934

